Quantum Mechanics in Infinite Symplectic Volume
نویسنده
چکیده
We quantise complex, infinite–dimensional projective space CP(H). We apply the result to quantise a complex, finite–dimensional, classical phase space C whose symplectic volume is infinite, by holomorphically embedding it into CP(H). The embedding is univocally determined by requiring it to be an isometry between the Bergman metric on C and the Fubini–Study metric on CP(H). Then the Hilbert–space bundle over C is the pullback, by the embedding, of the Hilbert–space bundle over CP(H).
منابع مشابه
Infinite-Dimensional Lie Groups and Algebras in Mathematical Physics
We give a review of infinite-dimensional Lie groups and algebras and show some applications and examples in mathematical physics. This includes diffeomorphism groups and their natural subgroups like volume-preserving and symplectic transformations, as well as gauge groups and loop groups. Applications include fluid dynamics, Maxwell’s equations, and plasma physics. We discuss applications in qu...
متن کاملInfinite Dimensional Hamiltonian Systems with Symmetries
We give a survey of infinite dimensional Hamiltonian systems with infinite dimensional Lie groups as symmetry groups and discuss concrete examples from soliton equations, plasma physics, fluid mechanics and quantum field theory. We present some new results of applications to BRST symmetries and g-symplectic structures.
متن کاملLoops in the Hamiltonian Group: a Survey
This note describes some recent results about the homotopy properties of Hamiltonian loops in various manifolds, including toric manifolds and one point blow ups. We describe conditions under which a circle action does not contract in the Hamiltonian group, and construct an example of a loop γ of diffeomorphisms of a symplectic manifold M with the property that none of the loops smoothly isotop...
متن کاملSymplectic Dirac-Kähler Fields
For the description of space-time fermions, Dirac-Kähler fields (inhomogeneous differential forms) provide an interesting alternative to the Dirac spinor fields. In this paper we develop a similar concept within the symplectic geometry of phase-spaces. Rather than on space-time, symplectic Dirac-Kähler fields can be defined on the classical phasespace of any Hamiltonian system. They are equival...
متن کاملGeometry of the Gauge Algebra in Noncommutative Yang-Mills Theory
A detailed description of the infinite-dimensional Lie algebra of ⋆-gauge transformations in noncommutative Yang-Mills theory is presented. Various descriptions of this algebra are given in terms of inner automorphisms of the underlying deformed algebra of functions on spacetime, of deformed symplectic diffeomorphisms, of the infinite unitary Lie algebra u(∞), and of the C∗-algebra of compact o...
متن کامل